277



|                                              | PROGRAMA          |                                       |                            |  |
|----------------------------------------------|-------------------|---------------------------------------|----------------------------|--|
|                                              | Código<br>en SIPE | Descripción en SIPE                   |                            |  |
| TIPO DE CURSO                                | 057               | CTT Especialización                   |                            |  |
| PLAN                                         | 2012              | 2012                                  |                            |  |
| SECTOR DE ESTUDIO                            | 490               | Química, Termodinámica y Agroenergía  |                            |  |
| ORIENTACIÓN 313 Energía generació            |                   | Energía generación de Energía con     | on de Energía con Residuos |  |
| MODALIDAD                                    | ·                 | e e e e e e e e e e e e e e e e e e e |                            |  |
| AÑO                                          | -                 |                                       |                            |  |
| TRAYECTO                                     | ,                 |                                       |                            |  |
| SEMESTRE                                     |                   |                                       |                            |  |
| MÓDULO                                       | 3                 | 3                                     |                            |  |
| ÁREA DE ASIGNATURA                           | 2771              | Residuos y Medio Ambiente             |                            |  |
| ASIGNATURA                                   | 06225             | Caracterización de residuos           |                            |  |
| ESPACIO o COMPONENT<br>CURRICULAR            |                   |                                       |                            |  |
| MODALIDAD D<br>APROBACIÓN                    |                   |                                       |                            |  |
| DURACIÓN DEL CURSO                           | Horas totales:16  | Horas semanales: 4                    | Cantidad de semanas: 4     |  |
| Presentación: 15/08/18 Nº Resolució del CETP | Exp. Nº 1282/12   | Res. Nº 2354/19 Acta Nº 211           | Fecha 3/09/19              |  |

## **FUNDAMENTACIÓN**

Es indiscutible que las próximas generaciones dedicarán una parte de su tiempo en aprender las técnicas y tecnologías del aprovechamiento energético. La Energía obtenida de la biomasa será una de las asignaturas cada vez más imprescindible para responder a la demanda eléctrica creciente. Ya es una solución competitiva que se logra como un sub producto en muchos procesos industriales y que es volcado a las líneas de transmisión de UTE. También es posible a partir de la obtención de residuos que son procesados y comercializados de manera sólida, como los pellets para las estufas, líquidos como los alcoholes y combustibles o gases que se almacenan para obtener de su quema el calentamiento o refrigeración aplicados a diversos procesos industriales o al uso doméstico.

Es importante la formación de técnicos que conozcan el correcto uso de las posibilidades energéticas de este recurso tan variable y particularizado en cada región del país, así como conocer lo amigable que puede llegar a ser con el

medio ambiente el procesado de los subproductos y residuos que la utilización de la biomasa genera.

#### **OBJETIVOS**

En esta propuesta se pretende que el estudiante desarrolle las competencias necesarias para comprender dónde se encuentran los potenciales recursos biomásicos y la caracterización de cada uno de ellos para luego distinguir el potencial disponible en cada residuo. Se aspira además a que conozca los procesos de los residuos previos y posteriores así como las formas en que conceptualmente pueden agruparse.

## **CONTENIDOS PROGRAMÁTICOS**

La selección y secuencia de los contenidos así como las actividades sugeridas a continuación, se estructuran de manera que permitan una comprensión general de la disciplina. Se desarrollan principalmente los conocimientos necesarios para comprender los sistemas biomásicos energéticos a escala micro y macro para las producciones más generalizadas en nuestro país.

Unidad 1 - Energía

- Concepto de Energía en la Naturaleza
- Definición de biomasa. Composición química de la biomasa
- Diferencia entre biomasa y combustible fósil
- Acumulación de energía. Fotosíntesis y comparación con celdas fotovoltaicas.

Unidad 2 - Fuentes de recursos

- Definición de combustión y Poder calorífico
- Uso de la energía acumulada en la biomasa.
- Generación de calor y combustión.
- La combustión y el medio ambiente

Unidad 3 - Caracterización de los residuos

- Metodología para la evaluación de los recursos de biomasa.





- Protecciones Eléctricas (aislación, sobrecarga, cortocircuito, sobretensión)
  Unidad 2 Paneles Fotovoltaicos.
- Distintas tecnologías de celdas(monocristalino, policristalino, capa delgada, procesos de fabricación, ventajas y desventajas, costos, proyección, clasificación NREL).
- Paneles (proceso de fabricación, encapsulado, diodos de protección, comparación modelos usados en plaza, costos, pérdidas, degradación, roturas)
- Parámetros técnicos (parámetros de vacio y de cortocircuito, valores STC y NOCT vida útil, punto de máxima potencia, rendimiento, temperatura, curva vs irradiancia, vs temperatura y punto de máxima potencia).
- Conexión (serie paralelo, dimensionado strings, criterios de orientacióninclinación, factor de sobredimensionado).

Unidad 3 – Sistemas aislados de la red eléctrica (OFFGRID)

- Conceptos de diseño (estructuras de montaje, materiales, criterios de orientación e inclinación).
- Sistemas de Acumulación- Baterías (distintas tecnologías, ciclos de carga descarga, proceso de carga, capacidad vs temperatura, rendimiento, durabilidad)
- Regulador Cargador Inversor (tipos de reguladores, parámetros técnicos)
- Usos (estimación consumo y demanda eléctrica, experiencia en Uruguay, Instalación hibrida de Cerros de Vera).

Unidad 4 – Sistemas conectados a la red eléctrica (ONGRID)

- Paneles fotovoltaicos (criterios de elección, conexión, cálculo de strings)
- Inversores (potencia, tipos, entradas de CC, trackers, conexión a la redelección, parámetros técnicos.)
- Experiencia Uruguay (Planta de ASAI y distintos proyectos de micro y mini generación).

- Protecciones redes de baja tensión (cortocircuito, sobrecarga, aislación, sobre y sub tensión, dimensionado de conductores).

#### Unidad 5 – Marco Normativo

- Política energética del Uruguay (Matriz energética, Normativa para la generación de energía eléctrica a partir de Solar FV, Mesa solar, Contratos, Beneficios fiscales).
- Micro y Mini Generación (decretos, Reglamento de Baja Tensión de UTE, contratos, facturación).
- Autoconsumo (decreto 114/014, primeras experiencias )
- Macrogeneración (Decreto 133/013, procesos licitatorios, franjas, adjudicaciones, contratos).

### PROPUESTA METODOLÓGICA

#### ASPECTOS GENERALES

Reconociendo que el dominio tecnológico posee una base experimental que actúa de referente fundamental en la toma de decisiones, se considera necesaria la realización de "prácticas" y "ensayos", permitiendo la adquisición de destrezas técnicas necesarias para el accionar docente.

Desde esta perspectiva los diferentes contenidos programáticos serán planteados a partir de una aplicación concreta y real del tema, para luego o simultáneamente abordar los distintos aspectos conceptuales involucrados en esas prácticas, facilitando así su comprensión.

Con relación a las prácticas planteadas por el docente, se sugiere que sean organizadas desarrollándose conjuntamente con un Informe el cuál comprenda procedimientos, cálculos, esquema de conexiones y conclusiones.

Se tratará de favorecer el desarrollo de la capacidad del docente - alumno de realizar analogías y asociar los conocimientos adquiridos con el bagaje





- Valor energético de los residuos.
- Caracterización.
- Pretratamientos.

Unidad 4 - Procesos de los residuos

- Procesos generadores de residuos: forestales, agrícola-ganaderos e industriales. Resultados
- Zonas de cultivo alimenticio y su remplazo por cultivos energéticos
- Transformaciones termoquímicas de la biomasa.
- Lagunas aeróbicas y anaeróbicas.

Unidad 5 - Definición de tipos de biomasa

- Biomasa de uso directo solido
- Biomasa de uso procesado, líquido
- Biomasa de uso procesado, gas
- Evaluación de los recursos de biomasa

# PROPUESTA METODOLÓGICA

Reconociendo que el dominio tecnológico posee una base experimental que actúa de referente fundamental en la toma de decisiones, se considera necesaria la realización de "prácticas" y "ensayos", que permitan la adquisición de destrezas técnicas necesarias para el accionar profesional.

Desde esta perspectiva los diferentes contenidos programáticos serán planteados a partir de una aplicación concreta y real del tema, abordando los distintos aspectos conceptuales involucrados en esas prácticas, facilitando así su comprensión.

Con relación a las prácticas planteadas por el docente, se sugiere que sean organizadas y que se desarrollen conjuntamente con un Informe que comprenda

procedimientos, cálculos y esquemas de interrelación de los procesos.

Se tratará de favorecer el desarrollo de la capacidad del alumno-técnico de realizar analogías y asociar los conocimientos adquiridos con el bagaje conceptual precedente, de manera que logre formar nuevos conocimientos que sostengan la capacidad para entender las técnicas y aplicaciones actualmente usadas en el aprovechamiento de la biomasa con la finalidad de obtener diversos sub productos como corriente eléctrica, gas o combustibles.

### **EVALUACIÓN**

Se recomienda una prueba escrita y el seguimiento de un breve proyecto final.

De acuerdo al logro de los objetivos planteados y a las diferentes actividades, se sugiere elaborar las evaluaciones como:

- preguntas múltiple opción (de 4 a 5 opciones)
- complementar con ejercicio teórico para ser resuelto.
- preguntas que requieran elaboración personal donde se evalúen distintas opciones ejercitando el espíritu crítico del técnico alumno.

Se sugiere una forma de puntuación según tabla adjunta:

| Modalidad de trabajo      | Incidencia |  |
|---------------------------|------------|--|
| Preguntas múltiple opción | 30%        |  |
| Ejercicio teórico         | 40%        |  |
| Preguntas a desarrollar   | 30%        |  |

## **BIBLIOGRAFÍA**

Abellán, Manuela."La Evaluación del Impacto Ambiental de Proyectos y Actividades Agroforestales", Colección Monografías, España, 2006.

De Juana, José Ma. "Energías renovables para el desarrollo", Ed. Paraninfo S.A, España, 2008.