

PROGRAMA PLANEAMIENTO EDUCATIVO DEPARTAMENTO DE DISEÑO Y DESARROLLO CURRICULAR

		PROGRAMA			
		Código en SIPE	Descripción	n en SIPE	
TIPO DE CURSO		050	Curso Técnico Terciario		
PLAN		2020	2020		
ORIENTACIÓN		97I	Instrumentación y Control		
MODALIDAD			Presencial		
AÑO		2	Segundo Año		
TRAYECTO					
SEMESTRE/MÓDULO		3	Tercer Semestre		
ÁREA DE ASIGNATURA		3543	Control de procesos		
ASIGNATURA		05373	Cálculo Aplicado a procesos III		
DURACIÓN DEL CURSO		Horas totales: 48	Horas semanales: 3 Cantidad semanas: 16		
Fecha de Presentación: 01/08/2019		Exp. N°	Res. Nº	Acta Nº	Fecha//

FUNDAMENTACIÓN

La evolución de la Tecnología, conjuntamente con los avances Tecnológicos que se observan en forma constante y ritmo vertiginoso, en esta época, producen cambios en las distintas disciplinas vinculadas a la Industria, lo que hace reflexionar y replantear algunos paradigmas relacionados a la Educación Técnica.

Hoy somos testigos de estos cambios tecnológicos que se reflejan en el campo laboral, lo que se traduce en exigencias y requisitos nuevos que debe cumplir un aspirante que desee incorporarse al mismo.

Dentro de este contexto, se hace necesario formar técnicos con un perfil específico para desempeñarse con conocimientos actualizados y solvencia en la instalación y mantenimiento de equipamientos asociados a los diferentes sistemas industriales.

La Educación Técnica debe adecuarse a estas nuevas demandas y se hace imprescindible formar alumnos capaces de seguir adquiriendo conocimientos y actualizaciones en forma continua.

OBJETIVOS GENERALES

El alumno al egreso de esta asignatura deberá:

J	Entender y aplicar la matemática detrás de los procesos y su control.
J	Comprender los distintos modelos matemáticos que simulan el comportamiento de un
	subsistema.
J	Aplicar ecuaciones diferenciales.
J	Entender las condiciones que se deben cumplir para aplicar modelos de pequeña señal.
J	Diseñar un circuito PID.

OBJETIVOS ESPECÍFICOS (MÓDULO III)

El alumno al egreso de esta asignatura deberá:

Comprender los principios básicos de los sistemas de control.

Comprender el modelado matemático de cada subsistema que compone una planta industrial.

Conceptualizar las ecuaciones diferenciales.

<u>UNID</u>	ADES TEMATICAS
<u>UNID</u>	<u>AD 1:</u>
CONC	EPTOS BÁSICOS DE SISTEMAS DE CONTROL
J	Clasificación de los sistemas de control
J	Representación y terminología de los sistemas de control
<u>UNID</u>	AD 2:
PRES	ENTACIÓN DE LA PLANTA DE TRABAJO EN LA ASIGNATURA LABORATORIO DE
CONT	ROL
J	Descripción de la planta y los diferentes elementos que aparecen.
J	Bloques funcionales de sistemas mecánicos.
J	Bloques funcionales de sistemas eléctricos.
J	Bloques funcionales en sistemas de fluidos.
J	Bloques funcionales de los sistemas térmicos.
J	Sistemas en ingeniería.
J	Sistemas rotacional-traslacional.
J	Sistemas electromecánicos.
J	Sistemas hidro-mecánicos.
J	Planteo del modelado físico de la planta y de los conceptos detrás de este modelado.
J	Planteo del modelo matemático de cada subsistema que compone la planta.
J	Repaso del concepto de derivada, para comprensión del modelo planteado.
J	Conceptualización del concepto de ecuación diferencial.
<u>UNID</u>	AD 3:
EJEM	PLOS DE APLICACIÒN DE DIFERENTES SISTEMAS FÍSICOS DE PRIMER Y
<u>SEGU</u>	NDO ORDEN
J	Planteo de la ecuación general de sistemas de primer y segundo orden.
J	Planteo de solución tipo de la ecuación diferencial para los ejemplos antes planteados.
	Medidas de desempeño de los sistemas de primer y segundo orden.

J Ejercicios de aplicación ajustando a las condiciones iniciales del sistema.

Planteo del concepto de estabilidad en un sistema.

PROPUESTA METODOLÓGICA

Para el desarrollo de este curso se propone que los docentes técnicos asuman un enfoque didáctico aplicado a los procesos y su control que concrete una equilibrada relación entre lo teórico y la realización de ejercicios.

- Se deberá, en lo posible, relacionar los contenidos teóricos con las actividades prácticas, de forma tal que alumno pueda aplicar, en forma inmediata, los fenómenos estudiados.
- Este programa es diseñado para ser desarrollado por un docente en un aula de laboratorio que contemple la especificidad del programa y con un grupo de veinte alumnos máximo. Por encima de éste nivel de relación alumno docente la concreción de los objetivos de la propuesta se verán cuestionados.

EVALUACION

- El docente podrá definir métodos de evaluación a utilizar, pero deberán ser adecuados según las consideraciones metodológicas establecidas en REPAG vigente, debiendo además, realizar las establecidas en el mismo.
- Se deberán realizar evaluaciones continuas durante todo el proceso de aprendizaje que involucren los conocimientos teóricos aplicados a la resolución de problemas reales.

BIBLIOGRAFÍA

Creus, A, (2007) Simulación y Control de Procesos por Ordenador. México. Ed. Marcombo.

Bolton, W (1996) Instrumentación y Control Industrial.; Ed Paraninfo. España

Gomariz, S, Biel Solé, D, Mata Acalá, J, Reyes Moreno, M; (1999) Teoría de Control: Diseño Electrónico, México. Ed. Alfaomega,

Ogata, K, (2000) Problemas de Ingeniería de Control usando Matlab. México. Ed. Alfaomega.