

PROGRAMA PLANEAMIENTO EDUCATIVO DEPARTAMENTO DE DISEÑO Y DESARROLLO CURRICULAR

		PROGRAMA			
		Código en SIPE	Descripción	en SIPE	
TIPO DE CURSO		050	Curso Técnico Terciario		
PLAN		2020	2020		
ORIENTACIÓN		97I	Instrumentación y Control		
MODALIDAD			Presencial		
AÑO		2	Segundo Año		
TRAYECTO					
SEMESTRE/MÓDULO		4	Cuarto Semestre		
ÁREA DE ASIGNATURA		3543	CONTROL DE PROCESOS		
ASIGNATURA		05374	Cálculo Aplicado a procesos IV		
DURACIÓN DEL CURSO		Horas totales: 48	Horas semanales: 3		Cantidad de semanas: 16
Fecha de					
Presentación: 01/08/2019	N° Resolución del CETP	Exp. Nº	Res. Nº	Acta Nº	Fecha//

FUNDAMENTACIÓN

La evolución de la Tecnología, conjuntamente con los avances Tecnológicos que se observan en forma constante y ritmo vertiginoso, en esta época, producen cambios en las distintas disciplinas vinculadas a la Industria, lo que hace reflexionar y replantear algunos paradigmas relacionados a la Educación Técnica.

Hoy somos testigos de estos cambios tecnológicos que se reflejan en el campo laboral, lo que se traduce en exigencias y requisitos nuevos que debe cumplir un aspirante que desee incorporarse al mismo.

Dentro de este contexto, se hace necesario formar técnicos con un perfil específico para desempeñarse con conocimientos actualizados y solvencia en la instalación y mantenimiento de equipamientos asociados a los diferentes sistemas industriales.

La Educación Técnica debe adecuarse a estas nuevas demandas y se hace imprescindible formar alumnos capaces de seguir adquiriendo conocimientos y actualizaciones en forma continua.

OBJETIVOS GENERALES

El alumno al egreso de esta asignatura deberá:

J	Entender y aplicar la matemática detrás de los procesos y su control.
J	Comprender los distintos modelos matemáticos que simulan el comportamiento de un
	subsistema.
J	Aplicar ecuaciones diferenciales.
J	Entender las condiciones que se deben cumplir para aplicar modelos de pequeña señal.
J	Diseñar un circuito PID.

<u>OBJETIVOS ESPECÍFICOS</u> (MÓDULO IV)

El alumno al egreso de esta asignatura deberá:

```
Comprender los modelos de pequeña señal.
Conocer los modos de control.
Aplicar la transformada de Laplace en sistemas de primer y segundo orden.
```

UNIDADES TEMÁTICAS

UNIDAD 1:

CONCEPTOS DE SISTEMAS NO LINEALES, EJEMPLOS

J	Condiciones para valides de un modelo a pequeña señal.
J	Taylor, solución a pequeña señal.
J	Ejemplos de aplicación, del concepto de pequeña señal.

UNIDAD 2:

ESTUDIO EN LAPLACE DE LOS SISTEMAS PREVIAMENTE VISTOS

J	Sistemas de primer orden.
J	Sistemas de segundo orden.
J	Planteo del concepto de estabilidad en un sistema.
J	Procesos continuos y discretos.
J	Modos de control.
J	Modo de dos posiciones.
J	Modo proporcional.
J	Control derivativo.
J	Control integral.
J	Controlador PID
J	Diseño de un circuito PID con Amplificadores Operacionales.

PROPUESTA METODOLÓGICA

Para el desarrollo de este curso se propone que los docentes técnicos asuman un enfoque didáctico aplicado a los procesos y su control que concrete una equilibrada relación entre lo teórico y la realización de ejercicios.

- Se deberá, en lo posible, relacionar los contenidos teóricos con las actividades prácticas, de forma tal que alumno pueda aplicar, en forma inmediata, los fenómenos estudiados.
- Este programa es diseñado para ser desarrollado por un docente en un aula de laboratorio que contemple la especificidad del programa y con un grupo de veinte alumnos máximo. Por encima de éste nivel de relación alumno docente la concreción de los objetivos de la propuesta se verán cuestionados.
- En este cuarto semestre el docente deberá enfocar el curso en un <u>"aprendizaje por proyectos"</u> de forma que interactúen todas las asignaturas del semestre IV.

EVALUACION

- El docente podrá definir métodos de evaluación a utilizar, pero deberán ser adecuados según las consideraciones metodológicas establecidas en REPAG vigente, debiendo además, realizar las establecidas en el mismo.
- Se deberán realizar evaluaciones continuas durante todo el proceso de aprendizaje que involucren los conocimientos teóricos aplicados a la resolución de problemas reales.

BIBLIOGRAFÍA

Bolton, W (1996) Instrumentación y Control Industrial.; España. Ed Paraninfo.

Creus, A, (2002) Simulación y Control de Procesos por Ordenador. México, Ed. Marcombo

Gomariz, S, (1999) Teoría de Control Diseño Electrónico. México, Ed. Alfaomega

Ogata, K (1998) Problemas de Ingeniería de Control usando Matlab, España, Ed. Prentice Hall